(2x^2+8)+(x-1)=(8x+2)

Simple and best practice solution for (2x^2+8)+(x-1)=(8x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2+8)+(x-1)=(8x+2) equation:



(2x^2+8)+(x-1)=(8x+2)
We move all terms to the left:
(2x^2+8)+(x-1)-((8x+2))=0
We get rid of parentheses
2x^2+x-((8x+2))+8-1=0
We calculate terms in parentheses: -((8x+2)), so:
(8x+2)
We get rid of parentheses
8x+2
Back to the equation:
-(8x+2)
We add all the numbers together, and all the variables
2x^2+x-(8x+2)+7=0
We get rid of parentheses
2x^2+x-8x-2+7=0
We add all the numbers together, and all the variables
2x^2-7x+5=0
a = 2; b = -7; c = +5;
Δ = b2-4ac
Δ = -72-4·2·5
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3}{2*2}=\frac{4}{4} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3}{2*2}=\frac{10}{4} =2+1/2 $

See similar equations:

| 864=27s | | 6v=990 | | 589=19h | | 2x+18+×=22-8x | | 0.072v+0.128-0.035v=0.235 | | –31n=–403 | | 9y-17y-2=0 | | 3/2x=10/4 | | D/l=N | | 3c1=c+1 | | F(x)=-3ײ-5×+2 | | 2x+4-(3+4)=2 | | 2y²+y=11y | | 112=−4​(4​z) | | 2x^2=1.5 | | X+.5x=18 | | -3(1+14a)+13a=-3(1-12) | | M=2(m+6)=48 | | 3x^2+17x+24=5 | | 6x=9=75 | | 52=9/5c | | 2/5x+8=2/3x | | 2/5+8=2/3x | | 8x/x-1+1/3=5/6+8/x-1 | | 5(3x+4)-2x=7x-31-2x+11 | | 3/4=2x-10 | | 18.6=z-3.8 | | 3s+5(s+150)=4730 | | 2x²+18x+9=0 | | 5(-3+4x)=4(2x+4)-12x | | 2=1.031^x | | 5n-7=3n-23 |

Equations solver categories